Optimization of Energy-Consuming Pathways towards Rapid Growth in HPV-Transformed Cells

نویسندگان

  • Sarit Mizrachy-Schwartz
  • Nataly Kravchenko-Balasha
  • Hannah Ben-Bassat
  • Shoshana Klein
  • Alexander Levitzki
چکیده

Cancer is a complex, multi-step process characterized by misregulated signal transduction and altered metabolism. Cancer cells divide faster than normal cells and their growth rates have been reported to correlate with increased metabolic flux during cell transformation. Here we report on progressive changes in essential elements of the biochemical network, in an in vitro model of transformation, consisting of primary human keratinocytes, human keratinocytes immortalized by human papillomavirus 16 (HPV16) and passaged repeatedly in vitro, and the extensively-passaged cells subsequently treated with the carcinogen benzo[a]pyrene. We monitored changes in cell growth, cell size and energy metabolism. The more transformed cells were smaller and divided faster, but the cellular energy flux was unchanged. During cell transformation the protein synthesis network contracted, as shown by the reduction in key cap-dependent translation factors. Moreover, there was a progressive shift towards internal ribosome entry site (IRES)-dependent translation. The switch from cap to IRES-dependent translation correlated with progressive activation of c-Src, an activator of AMP-activated protein kinase (AMPK), which controls energy-consuming processes, including protein translation. As cellular protein synthesis is a major energy-consuming process, we propose that the reduction in cell size and protein amount provide energy required for cell survival and proliferation. The cap to IRES-dependent switch seems to be part of a gradual optimization of energy-consuming mechanisms that redirects cellular processes to enhance cell growth, in the course of transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cancer cell-specific inducer of apoptosis.

Human papillomavirus (HPV) DNA is found in virtually all cervical cancers, strongly suggesting that these viruses are necessary to initiate this disease. The HPV E2 protein is required for viral replication, but E2 expression is usually lost in HPV-transformed cells because of the integration of viral DNA into the host chromosome. Several studies have shown that the reintroduction of E2 into HP...

متن کامل

Human Papillomavirus Type16- L1 VLP Production in Insect Cells

  Objective(s):  Infection by high-risk papillomavirus is regarded as the major risk factor in the development of cervical cancer. Recombinant DNA technology allows expression of the L1 major capsid protein of HPV in different expression systems, which has intrinsic capacity to self-assemble into viral-like particles (VLP). VLPS are non-infectious, highly immunogenic and can elicit neutralizing...

متن کامل

Solution to Material Durability and Energy Consuming Optimization Based on New Technology in Urban Management System

Energy consumption share in construction part and dependent industries is about 40 percent of total energy consuming in Iran which is significant compared to other industries such as transportation, agriculture and therefore is of important. As energy consumption reduction and material durability improvement leads to cost reduction from one hand and environment pollution reduction on the othe...

متن کامل

Economic evaluation of strategies for energy consuming optimization with Fuzzy logic (The case study on Atisaz, Tehran)

One of the important energy consuming sectors of the country is buildings. In this research, we use the energy audit of the Atisaz complex in Tehran to evaluate the economic benefits of energy saving measures.  We evaluate measures such as: using the automatic damper, replacing the active existing chiller with the solar absorption one, using intelligent boiler-room and replacing the existing li...

متن کامل

E2 proteins from high- and low-risk human papillomavirus types differ in their ability to bind p53 and induce apoptotic cell death.

The E2 proteins from oncogenic (high-risk) human papillomaviruses (HPVs) can induce apoptotic cell death in both HPV-transformed and non-HPV-transformed cells. Here we show that the E2 proteins from HPV type 6 (HPV6) and HPV11, two nononcogenic (low-risk) HPV types, fail to induce apoptosis. Unlike the high-risk HPV16 E2 protein, these low-risk E2 proteins fail to bind p53 and fail to induce p5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007